User’s Manual

Software Version: 2.4.0b
Date: 2008/08/08

High performance
Preconaitioners

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

Copyright (c) 2008, Lawrence Livermore National Security, LLC. Produced at the Lawrence Liv-
ermore National Laboratory. This file is part of HYPRE. See file COPYRIGHT for details.

HYPRE is free software; you can redistribute it and/or modify it under the terms of the GNU
Lesser General Public License (as published by the Free Software Foundation) version 2.1 dated

February 1999.

Contents

1 Introduction [
1.1 Overview of Features il

1.2 Getting More Information L L

1.3 How to get started
1.3.1 Imstalling hypre e Bl

1.3.2 Choosing a conceptual interface 0oL Bl

1.3.3 Writing your code

2 Structured-Grid System Interface (Struct) @
2.1 Setting Up the Struct Grid Bl
2.2 Setting Up the Struct Stencil L I
2.3 Setting Up the Struct Matrix IK0)
2.4 Setting Up the Struct Right-Hand-Side Vector, 13]
2.5 Symmetric Matrices L L @4

3 Semi-Structured-Grid System Interface (SStruct) i d
3.1 Block-Structured Grids L 18
3.2 Structured Adaptive Mesh Refinement, 22]

4 Finite Element Interface 27]
4.1 Introduction 27]
4.2 A Brief Description of the Finite Element Interface 28]

5 Linear-Algebraic System Interface (1J) [31]
5.1 [IJ Matrix Interface 311
5.2 1J Vector Interface
5.3 A Scalable Interface 34

6 Solvers and Preconditioners
6.1 SMG 37
6.2 PFMG e 38
6.3 SysPEMG [38
6.4 SplitSolve 38

ii

CONTENTS

6.5 FAC e 38
6.6 Maxwell
6.7 Hybrid (41
6.8 BoomerAMG 4T

6.8.1 Parameter Options 41
6.9 AMS . . e e 43l

6.9.1 Overview e e 43

6.9.2 Sample Usage 44
6.10 The MLI Package 48
6.11 ParaSails L 48

6.11.1 Parameter Settings 48

6.11.2 Preconditioning Nearly Symmetric Matrices B0l
6.12 Euclid o 0]

6.12.1 Overview e B0

6.12.2 Setting Options: Examples 531

6.12.3 Options SUMmary ot e e
6.13 PILUT: Parallel Incomplete Factorization B3
6.14 FEL Solvers 64

6.14.1 Solvers Available Only through the FEI
General Information 59]
7.1 Getting the Source Code B9
7.2 Building the Library 9]

7.2.1 Configure Options 60]

7.2.2 Make Targets e e 6]
7.3 Testing the Library 6]
7.4 Linking to the Library 62]
7.5 Error Flags 62]
7.6 Bug Reporting and General Support [63]
7.7 Using HYPRE in External FEI Implementations 63]
7.8 Calling HYPRE from Other Languages 64]
Babel-based Interfaces 67
8.1 Introduction L e 67]
8.2 Imterfaces Are Similar 67
8.3 Interfaces Are Different 6]
8.4 Names and Conventions 6]
8.5 Parameters and Error Flags o 691
8.6 MPI Communicator ird)
8.7 Memory Management 71l
8.8 Casting e
8.9 The HYPRE Object Structure
810 Arrayso 4

CONTENTS

8.11 Building HYPRE with the Babel Interface

8.11.1 Building HYPRE with Python Using the Babel Interface

iii

iv

CONTENTS

Chapter 1

Introduction

This manual describes hypre, a software library of high performance preconditioners and solvers for
the solution of large, sparse linear systems of equations on massively parallel computers. The hypre
library was created with the primary goal of providing users with advanced parallel preconditioners.
The library features parallel multigrid solvers for both structured and unstructured grid problems.
For ease of use, these solvers are accessed from the application code via hypre’s conceptual linear
system interfaces (abbreviated to conceptual interfaces throughout much of this manual), which
allow a variety of natural problem descriptions.

This introductory chapter provides an overview of the various features in hypre, discusses further
sources of information on hypre, and offers suggestions on how to get started.

1.1 Overview of Features

e Scalable preconditioners provide efficient solution on today’s and tomorrow’s sys-
tems: hypre contains several families of preconditioner algorithms focused on the scalable
solution of very large sparse linear systems. (Note that small linear systems, systems that are
solvable on a sequential computer, and dense systems are all better addressed by other libraries
that are designed specifically for them.) hypre includes “grey-box” algorithms that use more
than just the matrix to solve certain classes of problems more efficiently than general-purpose
libraries. This includes algorithms such as structured multigrid.

e Suite of common iterative methods provides options for a spectrum of problems:
hypre provides several of the most commonly used Krylov-based iterative methods to be used
in conjunction with its scalable preconditioners. This includes methods for nonsymmetric
systems such as GMRES and methods for symmetric matrices such as Conjugate Gradient.

e Intuitive grid-centric interfaces obviate need for complicated data structures and
provide access to advanced solvers: hypre has made a major step forward in usability
from earlier generations of sparse linear solver libraries in that users do not have to learn
complicated sparse matrix data structures. Instead, hypre does the work of building these
data structures for the user through a variety of conceptual interfaces, each appropriate to

2 CHAPTER 1. INTRODUCTION

different classes of users. These include stencil-based structured/semi-structured interfaces
most appropriate for finite-difference applications; a finite-element based unstructured inter-
face; and a linear-algebra based interface. Each conceptual interface provides access to several
solvers without the need to write new interface code.

e User options accommodate beginners through experts: hypre allows a spectrum of
expertise to be applied by users. The beginning user can get up and running with a minimal
amount of effort. More expert users can take further control of the solution process through
various parameters.

e Configuration options to suit your computing system: hypre allows a simple and
flexible installation on a wide variety of computing systems. Users can tailor the installation
to match their computing system. Options include debug and optimized modes, the ability
to change required libraries such as MPI and BLAS, a sequential mode, and modes enabling
threads for certain solvers. On most systems, however, hypre can be built by simply typing
configure followed by make.

e Interfaces in multiple languages provide greater flexibility for applications: hypre
is written in C (with the exception of the FEI interface, which is written in C4++) and utilizes
Babel to provide interfaces for users of Fortran 77, Fortran 90, C++4-, Python, and Java. For
more information on Babel, see http://www.11lnl.gov/CASC/components/babel.html.

1.2 Getting More Information

This user’s manual consists of chapters describing each conceptual interface, a chapter detailing
the various linear solver options available, and detailed installation information. In addition to this
manual, a number of other information sources for hypre are available.

e Reference Manual: The reference manual comprehensively lists all of the interface and
solver functions available in hypre. The reference manual is ideal for determining the various
options available for a particular solver or for viewing the functions provided to describe a
problem for a particular interface.

e Example Problems: A suite of example problems is provided with the hypre installation.
These examples reside in the examples subdirectory and demonstrate various features of the
hypre library. Associated documentation may be accessed by viewing the README.html file
in that same directory.

e Papers, Presentations, etc.: Articles and presentations related to the hypre software
library and the solvers available in the library are available from the hypre web page at
http://www.1l1lnl.gov/CASC/hypre/.

e Mailing Lists: There are two hypre mailing lists that can be subscribed to through the
hypre web page at http://www.1lnl.gov/CASC/hypre/:

http://www.llnl.gov/CASC/components/babel.html
http://www.llnl.gov/CASC/hypre/
http://www.llnl.gov/CASC/hypre/

1.3. HOW TO GET STARTED 3

1. hypre-announce (hypre-announce@lists.llnl.gov): The development team uses this
list to announce new general releases of hypre. It cannot be posted to by users.

2. hypre-beta-announce (hypre-beta-announce@lists.1llnl.gov): The development team
uses this list to announce new beta releases of hypre. It cannot be posted to by users.

1.3 How to get started

1.3.1 Installing hypre

As previously noted, on most systems hypre can be built by simply typing configure followed
by make in the top-level source directory. For more detailed instructions read the INSTALL file
provided with the hypre distribution or refer to the last chapter in this manual. Note the following
requirements:

e To run in parallel, hypre requires an installation of MPI.

e Configuration of hypre with threads requires an implementation of OpenMP. Currently, only
a subset of hypre is threaded.

e The hypre library currently does not support complex-valued systems.

1.3.2 Choosing a conceptual interface

An important decision to make before writing any code is to choose an appropriate conceptual
interface. These conceptual interfaces are intended to represent the way that applications developers
naturally think of their linear problem and to provide natural interfaces for them to pass the
data that defines their linear system into hypre. Essentially, these conceptual interfaces can be
considered convenient utilities for helping a user build a matrix data structure for hypre solvers
and preconditioners. The top row of Figure illustrates a number of conceptual interfaces.
Generally, the conceptual interfaces are denoted by different types of computational grids, but
other application features might also be used, such as geometrical information. For example,
applications that use structured grids (such as in the left-most interface in the Figure typically
view their linear problems in terms of stencils and grids. On the other hand, applications that use
unstructured grids and finite elements typically view their linear problems in terms of elements and
element stiffness matrices. Finally, the right-most interface is the standard linear-algebraic (matrix
rows/columns) way of viewing the linear problem.

The hypre library currently supports four conceptual interfaces, and typically the appropriate
choice for a given problem is fairly obvious, e.g. a structured-grid interface is clearly inappropriate
for an unstructured-grid application.

e Structured-Grid System Interface (Struct): This interface is appropriate for applica-
tions whose grids consist of unions of logically rectangular grids with a fixed stencil pattern
of nonzeros at each grid point. This interface supports only a single unknown per grid point.
See Chapter [2| for details.

4 CHAPTER 1. INTRODUCTION

Linear System Interfaces

= W

e
e
4%

Linear Solvers
GMG,.. | | Fac,.. | | Hyprig,.. | | AmMGe,.. | | nu,.. |
\
Data Layout
structured | | composite | |block-struc| | unstruc | | CSR |

Figure 1.1: Graphic illustrating the notion of conceptual interfaces.

e Semi-Structured-Grid System Interface (SStruct): This interface is appropriate for
applications whose grids are mostly structured, but with some unstructured features. Exam-
ples include block-structured grids, composite grids in structured adaptive mesh refinement
(AMR) applications, and overset grids. This interface supports multiple unknowns per cell.
See Chapter [3] for details.

e Finite Element Interface (FEI): This is appropriate for users who form their linear sys-
tems from a finite element discretization. The interface mirrors typical finite element data
structures, including element stiffness matrices. Though this interface is provided in hypre,
its definition was determined elsewhere (please email to Alan Williams william@sandia.gov
for more information). See Chapter 4| for details.

e Linear-Algebraic System Interface (IJ): This is the traditional linear-algebraic inter-
face. It can be used as a last resort by users for whom the other grid-based interfaces are
not appropriate. It requires more work on the user’s part, though still less than building par-
allel sparse data structures. General solvers and preconditioners are available through this
interface, but not specialized solvers which need more information. Our experience is that
users with legacy codes, in which they already have code for building matrices in particular
formats, find the 1J interface relatively easy to use. See Chapter [5| for details.

Generally, a user should choose the most specific interface that matches their application, be-
cause this will allow them to use specialized and more efficient solvers and preconditioners without
losing access to more general solvers. For example, the second row of Figure is a set of linear
solver algorithms. Each linear solver group requires different information from the user through the
conceptual interfaces. So, the geometric multigrid algorithm (GMG) listed in the left-most box,

1.3. HOW TO GET STARTED)

for example, can only be used with the left-most conceptual interface. On the other hand, the ILU
algorithm in the right-most box may be used with any conceptual interface. Matrix requirements
for each solver and preconditioner are provided in Chapter [6] and in the hypre Reference Manual.
Your desired solver strategy may influence your choice of conceptual interface. A typical user will
select a single Krylov method and a single preconditioner to solve their system.

The third row of Figure is a list of data layouts or matrix/vector storage schemes. The
relationship between linear solver and storage scheme is similar to that of the conceptual interface
and linear solver. Note that some of the interfaces in hypre currently only support one matrix/vector
storage scheme choice. The conceptual interface, the desired solvers and preconditioners, and the
matrix storage class must all be compatible.

1.3.3 Writing your code

As discussed in the previous section, the following decisions should be made before writing any
code:

1. Choose a conceptual interface.
2. Choose your desired solver strategy.
3. Look up matrix requirements for each solver and preconditioner.

4. Choose a matrix storage class that is compatible with your solvers and preconditioners and
your conceptual interface.

Once the previous decisions have been made, it is time to code your application to call hypre.
At this point, reviewing the previously mentioned example codes provided with the hypre library
may prove very helpful. The example codes demonstrate the following general structure of the
application calls to hypre:

1. Build any necessary auxiliary structures for your chosen conceptual interface. This
includes, e.g., the grid and stencil structures if you are using the structured-grid interface.

2. Build the matrix, solution vector, and right-hand-side vector through your chosen
conceptual interface. Each conceptual interface provides a series of calls for entering
information about your problem into hypre.

3. Build solvers and preconditioners and set solver parameters (optional). Some
parameters like convergence tolerance are the same across solvers, while others are solver
specific.

4. Call the solve function for the solver.

5. Retrieve desired information from solver. Depending on your application, there may be
different things you may want to do with the solution vector. Also, performance information
such as number of iterations is typically available, though it may differ from solver to solver.

6 CHAPTER 1. INTRODUCTION

The subsequent chapters of this User’s Manual provide the details needed to more fully under-
stand the function of each conceptual interface and each solver. Remember that a comprehensive
list of all available functions is provided in the hypre Reference Manual, and the provided example
codes may prove helpful as templates for your specific application.

Chapter 2

Structured-Grid System Interface
(Struct)

In order to get access to the most efficient and scalable solvers for scalar structured-grid applications,
users should use the Struct interface described in this chapter. This interface will also provide
access (this is not yet supported) to solvers in hypre that were designed for unstructured-grid
applications and sparse linear systems in general. These additional solvers are usually provided via
the unstructured-grid interface (FEI) or the linear-algebraic interface (IJ) described in Chapters
and [B

Figure gives an example of the type of grid currently supported by the Struct interface.
The interface uses a finite-difference or finite-volume style, and currently supports only scalar PDEs
(i.e., one unknown per gridpoint). There are four basic steps involved in setting up the linear system
to be solved:

1. set up the grid,

2. set up the stencil,

3. set up the matrix,

4. set up the right-hand-side vector.

process 0 ~ process 1
° ° ° . . O et (6,4)
(.j’,]) —1> o . '] . 3 . ° . .

Figure 2.1: An example 2D structured grid, distributed accross two processors.

8 CHAPTER 2. STRUCTURED-GRID SYSTEM INTERFACE (STRUCT)

-«
Index Space
le
1] ' « ||
i (6,11) L <
] 73 (158 e
— 32 B —
7% i
| HEEEE
I I I I I I I I l l [l l

Figure 2.2: A box is a collection of abstract cell-centered indices, described by its minimum and
maximum indices. Here, two boxes are illustrated.

To describe each of these steps in more detail, consider solving the 2D Laplacian problem

2, = f i i
{ V?u = f, in the domain, (2.1)

u =0, on the boundary.

Assume ([2.1)) is discretized using standard 5-pt finite-volumes on the uniform grid pictured in
and assume that the problem data is distributed across two processes as depicted.

2.1 Setting Up the Struct Grid

The grid is described via a global index space, i.e., via integer singles in 1D, tuples in 2D, or triples
in 3D (see Figure . The integers may have any value, negative or positive. The global indexes
allow hypre to discern how data is related spatially, and how it is distributed across the parallel
machine. The basic component of the grid is a box: a collection of abstract cell-centered indices in
index space, described by its “lower” and “upper” corner indices. The scalar grid data is always
associated with cell centers, unlike the more general SStruct interface which allows data to be
associated with box indices in several different ways.

Each process describes that portion of the grid that it “owns”, one box at a time. For example,
the global grid in Figure|2.1| can be described in terms of three boxes, two owned by process 0, and
one owned by process 1. Figure shows the code for setting up the grid on process 0 (the code for
process 1 is similar). The “icons” at the top of the figure illustrate the result of the numbered lines
of code. The Create () routine creates an empty 2D grid object that lives on the MPT_COMM_WORLD
communicator. The SetExtents() routine adds a new box to the grid. The Assemble () routine
is a collective call (i.e., must be called on all processes from a common synchronization point), and
finalizes the grid assembly, making the grid “ready to use”.

2.1. SETTING UP THE STRUCT GRID

24) 24
|
L] L] i L d . t
; L] L] ; . . L] L] L] ; L] L] L] L] L]
[| [
(31) (31) (:31)
1 2 3 4

HYPRE_StructGrid grid;

int ndim = 2;

int ilower([][2] = {{-3,1}, {0,1}};
int iupper[][2] = {{-1,2}, {2,4}};

/* Create the grid object */
1: HYPRE_StructGridCreate(MPI_COMM_WORLD, ndim, &grid);

/* Set grid extents for the first box */
2: HYPRE_StructGridSetExtents(grid, ilower[0], iupper[0]);

/* Set grid extents for the second box */
3: HYPRE_StructGridSetExtents(grid, ilower[1], iupper[1]);

/* Assemble the grid */
4: HYPRE_StructGridAssemble(grid);

Figure 2.3: Code on process 0 for setting up the grid in Figure

10 CHAPTER 2. STRUCTURED-GRID SYSTEM INTERFACE (STRUCT)

8 0 (0,0 oo 1

-E' L= (-10) Y o] =(—2—@
S 2> (10 B

S 3+ (0-1) @ |

%’,) 44— (0 1) (-1-1) o

Figure 2.4: Representation of the 5-point discretization stencil for the example problem.

2.2 Setting Up the Struct Stencil

The geometry of the discretization stencil is described by an array of indexes, each representing a
relative offset from any given gridpoint on the grid. For example, the geometry of the 5-pt stencil
for the example problem being considered can be represented by the list of index offsets shown in
Figure Here, the (0,0) entry represents the “center” coefficient, and is the Oth stencil entry.
The (0, —1) entry represents the “south” coefficient, and is the 3rd stencil entry. And so on.

On process 0 or 1, the code in Figure [2.5 will set up the stencil in Figure The stencil must
be the same on all processes. The Create () routine creates an empty 2D, 5-pt stencil object. The
SetElement () routine defines the geometry of the stencil and assigns the stencil numbers for each
of the stencil entries. None of the calls are collective calls.

2.3 Setting Up the Struct Matrix

The matrix is set up in terms of the grid and stencil objects described in Sections and
The coefficients associated with each stencil entry will typically vary from gridpoint to gridpoint,
but in the example problem being considered, they are as follows over the entire grid (except at
boundaries; see below):

-1 4 -1 . (2.2)

On process 0, the code in Figure will set up matrix values associated with the center (entry
0) and south (entry 3) stencil entries as given by and Figure (boundaries are ignored here
temporarily). The Create() routine creates an empty matrix object. The Initialize() routine
indicates that the matrix coefficients (or values) are ready to be set. This routine may or may
not involve the allocation of memory for the coefficient data, depending on the implementation.
The optional Set routines mentioned later in this chapter and in the Reference Manual, should
be called before this step. The SetBoxValues() routine sets the matrix coefficients for some set
of stencil entries over the gridpoints in some box. Note that the box need not correspond to any
of the boxes used to create the grid, but values should be set for all gridpoints that this process

2.3. SETTING UP THE STRUCT MATRIX

(0,0) (0,0) (0,0)
0 o—]=

(-1-1) (-1-1) (-1-1)
1 2 3
(0.0) (0,0) (0,0) I
I

o] —()=2—0 o— | ? 2 —e o] —()—2—@

3 3
(-1-1) (-1-1) l (-1-1) [
4 5 6

HYPRE_StructStencil stencil;
int ndim = 2;

int size = b;

int entry;

int offsets[][2]

{{0,0}, {-1,0}, {1,0}, {0,-1}, {0,1}};

/* Create the stencil object */
1: HYPRE_StructStencilCreate(ndim, size, &stencil);

/* Set stencil entries */
for (entry = 0; entry < size; entry++)

{
2-6: HYPRE_StructStencilSetElement (stencil, entry, offsets[entry]);

/* Thats it! There is no assemble routine */

Figure 2.5: Code for setting up the stencil in Figure

11

12 CHAPTER 2. STRUCTURED-GRID SYSTEM INTERFACE (STRUCT)

HYPRE_StructMatrix A;

double values[36];
int stencil_indices[2] = {0,3};
int i;

HYPRE_StructMatrixCreate (MPI_COMM_WORLD, grid, stencil, &A);
HYPRE_StructMatrixInitialize(A);

for (i =0; i < 36; i += 2)
{

4.0;
-1.0;

values[i]
values[i+1]

HYPRE_StructMatrixSetBoxValues(A, ilower[0], iupper[0], 2,
stencil_indices, values);

HYPRE_StructMatrixSetBoxValues(A, ilower[1], iupper[1], 2,
stencil_indices, values);

/* set boundary conditions */

HYPRE_StructMatrixAssemble(A);

Figure 2.6: Code for setting up matrix values associated with stencil entries 0 and 3 as given by
and Figure 2.4

2.4. SETTING UP THE STRUCT RIGHT-HAND-SIDE VECTOR 13

{-3, 1};
{2, 1};

int ilower[2]
int iupper[2]

/* create matrix and set interior coefficients */

/* implement boundary conditions */

for (i = 0; i < 12; i++)

{

values[i] = 0.0;
}
i = 3;

HYPRE_StructMatrixSetBoxValues(A, ilower, iupper, 1, &i, values);

/* complete implementation of boundary conditions */

Figure 2.7: Code for adjusting boundary conditions along the lower grid boundary in Figure [2.1

“owns”. The Assemble () routine is a collective call, and finalizes the matrix assembly, making the
matrix “ready to use”.

Matrix coefficients that reach outside of the boundary should be set to zero. For efficiency
reasons, hypre does not do this automatically. The most natural time to insure this is when the
boundary conditions are being set, and this is most naturally done after the coefficients on the
grid’s interior have been set. For example, during the implementation of the Dirichlet boundary
condition on the lower boundary of the grid in Figure the “south” coefficient must be set to
zero. To do this on process 0, the code in Figure could be used:

2.4 Setting Up the Struct Right-Hand-Side Vector

The right-hand-side vector is set up similarly to the matrix set up described in Section above.
The main difference is that there is no stencil (note that a stencil currently does appear in the
interface, but this will eventually be removed).

On process 0, the code in Figure 2.8 will set up the right-hand-side vector values. The Create ()
routine creates an empty vector object. The Initialize() routine indicates that the vector co-
efficients (or values) are ready to be set. This routine follows the same rules as its corresponding
Matrix routine. The SetBoxValues() routine sets the vector coefficients over the gridpoints in
some box, and again, follows the same rules as its corresponding Matrix routine. The Assemble ()

14 CHAPTER 2. STRUCTURED-GRID SYSTEM INTERFACE (STRUCT)

HYPRE_StructVector b;
double values[18];
int i;

HYPRE_StructVectorCreate (MPI_COMM_WORLD, grid, &b);
HYPRE_StructVectorInitialize(b);

for (i = 0; i < 18; i++)
{

values[i] = 0.0;

HYPRE_StructVectorSetBoxValues(b, ilower[0], iupper[0], values);
HYPRE_StructVectorSetBoxValues(b, ilower[1], iupper[1], values);

HYPRE_StructVectorAssemble(b);
Figure 2.8: Code for setting up right-hand-side vector values.

routine is a collective call, and finalizes the vector assembly, making the vector “ready to use”.

2.5 Symmetric Matrices

Some solvers and matrix storage schemes provide capabilities for significantly reducing memory
usage when the coefficient matrix is symmetric. In this situation, each off-diagonal coefficient
appears twice in the matrix, but only one copy needs to be stored. The Struct interface provides
support for matrix and solver implementations that use symmetric storage via the SetSymmetric ()
routine.

To describe this in more detail, consider again the 5-pt finite-volume discretization of on
the grid pictured in Figure[2.1l Because the discretization is symmetric, only half of the off-diagonal
coefficients need to be stored. To turn symmetric storage on, the following line of code needs to be
inserted somewhere between the Create() and Initialize() calls.

HYPRE_StructMatrixSetSymmetric(A, 1);

The coefficients for the entire stencil can be passed in as before. Note that symmetric storage may
or may not actually be used, depending on the underlying storage scheme. Currently in hypre, the
Struct interface always uses symmetric storage.

To most efficiently utilize the Struct interface for symmetric matrices, notice that only half of
the off-diagonal coefficients need to be set. To do this for the example being considered, we simply

2.5. SYMMETRIC MATRICES 15

need to redefine the 5-pt stencil of Section to an “appropriate” 3-pt stencil, then set matrix
coefficients (as in Section [2.3) for these three stencil elements only. For example, we could use the
following stencil

)
(0,0) (1,0) |. (2.3)

This 3-pt stencil provides enough information to recover the full 5-pt stencil geometry and associated
matrix coefficients.

16

CHAPTER 2. STRUCTURED-GRID SYSTEM INTERFACE (STRUCT)

Chapter 3

Semi-Structured-Grid System
Interface (SStruct)

The SStruct interface is appropriate for applications with grids that are mostly—but not entirely—
structured, e.g. block-structured grids (see Figure , composite grids in structured adaptive
mesh refinement (AMR) applications (see Figure [3.7)), and overset grids. In addition, it supports
more general PDEs than the Struct interface by allowing multiple variables (system PDEs) and
multiple variable types (e.g. cell-centered, face-centered, etc.). The interface provides access to
data structures and linear solvers in hypre that are designed for semi-structured grid problems, but
also to the most general data structures and solvers. These latter solvers are usually provided via
the FEI or IJ interfaces described in Chapters [4] and

The SStruct grid is composed out of a number of structured grid parts, where the physical inter-
relationship between the parts is arbitrary. Each part is constructed out of two basic components:
boxes (see Figure and wvartables. Variables represent the actual unknown quantities in the
grid, and are associated with the box indices in a variety of ways, depending on their types. In
hypre, variables may be cell-centered, node-centered, face-centered, or edge-centered. Face-centered
variables are split into x-face, y-face, and z-face, and edge-centered variables are split into x-edge,
y-edge, and z-edge. See Figure for an illustration in 2D.

The SStruct interface uses a graph to allow nearly arbitrary relationships between part data.
The graph is constructed from stencils plus some additional data-coupling information set by the
GraphAddEntries () routine. Another method for relating part data is the GridSetNeighborPart ()
routine, which is particularly suited for block-structured grid problems.

There are five basic steps involved in setting up the linear system to be solved:

. set up the grid,

. set up the stencils,

1
2
3. set up the graph,
4. set up the matrix,
5

. set up the right-hand-side vector.

17

18 CHAPTER 3. SEMI-STRUCTURED-GRID SYSTEM INTERFACE (SSTRUCT)

(gl
J
»>
l

i
|5
P>
i
|5

Figure 3.1: Grid variables in hypre are referenced by the abstract cell-centered index to the left
and down in 2D (analogously in 3D). In the figure, index (¢, j) is used to reference the variables in
black. The variables in grey—although contained in the pictured cell—are not referenced by the
(i,7) index.

3.1 Block-Structured Grids

In this section, we describe how to use the SStruct interface to define block-structured grid prob-
lems. We will do this primarily by example, paying particular attention to the construction of
stencils and the use of the GridSetNeighborPart () interface routine.

Consider the solution of the diffusion equation

— V- (DVu)+ou=f (3.1)

on the block-structured grid in Figure [3.2] where D is a scalar diffusion coefficient, and o > 0.
The discretization [19] introduces three different types of variables: cell-centered, z-face, and y-
face. The three discretization stencils that couple these variables are also given in the figure. The
information in this figure is essentially all that is needed to describe the nonzero structure of the
linear system we wish to solve.

The grid in Figure is defined in terms of five separate logically-rectangular parts as shown in
Figure[3.3] and each part is given a unique label between 0 and 4. Each part consists of a single box
with lower index (1,1) and upper index (4,4) (see Section [2.1]), and the grid data is distributed on
five processes such that data associated with part p lives on process p. Note that in general, parts
may be composed out of arbitrary unions of boxes, and indices may consist of non-positive integers
(see Figure . Also note that the SStruct interface expects a domain-based data distribution
by boxes, but the actual distribution is determined by the user and simply described (in parallel)
through the interface.

As with the Struct interface, each process describes that portion of the grid that it “owns”,
one box at a time. Figure shows the code for setting up the grid on process 3 (the code for the
other processes is similar). The “icons” at the top of the figure illustrate the result of the numbered
lines of code. Process 3 needs to describe the data pictured in the bottom-right of the figure. That
is, it needs to describe part 3 plus some additional neighbor information that ties part 3 together

3.1. BLOCK-STRUCTURED GRIDS 19

»
»
»
W
v
L]
-
v

»
»
»
v
V.
(2
v
v

»

Figure 3.2: Example of a block-structured grid with five logically-rectangular blocks and three
variables types: cell-centered, z-face, and y-face. Discretization stencils for the cell-centered (left),
x-face (middle), and y-face (right) variables are also pictured.

=~
part 1 1+ 9

(L1) (1,1) I

Figure 3.3: Test figure.

CHAPTER 3. SEMI-STRUCTURED-GRID SYSTEM INTERFACE (SSTRUCT)

e RS

HYPRE_SStructGrid grid;

int ndim = 2, nparts = 5, nvars = 3, part = 3;

int extents([][2] = {{1,1}, {4,4}};

int vartypes[] = {HYPRE_SSTRUCT_VARIABLE_CELL,
HYPRE_SSTRUCT_VARIABLE_XFACE,
HYPRE_SSTRUCT_VARIABLE_YFACE};

int nb2_n_part = 2, nb4_n_part = 4;

int nb2_exts[]1[2] = {{1,0}, {4,0}}, nbd_exts[I[2] = {{0,1}, {0,4}};
int nb2_n_exts[][2] = {{1,1}, {1,4}}, nbd_n_exts[]1[2] = {{4,1}, {4,4}3};
int nb2_map[2] = {1,0}, nb4_map [2] = {0,1};

int nb2_dir[2] = {1,1}, nb4_dir[2] = {1,1};

HYPRE_SStructGridCreate (MPI_COMM_WORLD, ndim, nparts, &grid);

/* Set grid extents and grid variables for part 3 */
HYPRE_SStructGridSetExtents(grid, part, extents[0], extents[1]);
HYPRE_SStructGridSetVariables(grid, part, nvars, vartypes);

/* Set spatial relationship between parts 3 and 2, then parts 3 and 4 */

HYPRE_SStructGridSetNeighborPart(grid, part, nb2_exts[0], nb2_exts[1],
nb2_n_part, nb2_n_exts[0], nb2_n_exts[1], nb2_map, nb2_dir);

HYPRE_SStructGridSetNeighborPart(grid, part, nb4_exts[0], nb4_exts[1],
nb4_n_part, nb4_n_exts[0], nb4_n_exts[1], nb4_map, nbd_dir);

HYPRE_SStructGridAssemble(grid) ;

Figure 3.4: Code on process 3 for setting up the grid in Figure

3.1. BLOCK-STRUCTURED GRIDS 21

with the rest of the grid. The Create() routine creates an empty 2D grid object with five parts
that lives on the MPI_COMM_WORLD communicator. The SetExtents() routine adds a new box to
the grid. The SetVariables() routine associates three variables of type cell-centered, z-face, and
y-face with part 3.

At this stage, the description of the data on part 3 is complete. However, the spatial relationship
between this data and the data on neighboring parts is not yet defined. To do this, we need to relate
the index space for part 3 with the index spaces of parts 2 and 4. More specifically, we need to
tell the interface that the two grey boxes neighboring part 3 in the bottom-right of Figure [3.4] also
correspond to boxes on parts 2 and 4. This is done through the two calls to the SetNeighborPart ()
routine. We will discuss only the first call, which describes the grey box on the right of the figure.
Note that this grey box lives outside of the box extents for the grid on part 3, but it can still be
described using the index-space for part 3 (recall Figure . That is, the grey box has extents
(1,0) and (4,0) on part 3’s index-space, which is outside of part 3’s grid. The arguments for the
SetNeighborPart () call are simply the lower and upper indices on part 3 and the corresponding
indices on part 2. The final two arguments to the routine indicate that the positive z-direction on
part 3 (i.e., the i component of the tuple (i,7)) corresponds to the positive y-direction on part 2
and that the positive y-direction on part 3 corresponds to the positive z-direction on part 2.

The Assemble () routine is a collective call (i.e., must be called on all processes from a common
synchronization point), and finalizes the grid assembly, making the grid “ready to use”.

With the neighbor information, it is now possible to determine where off-part stencil entries
couple. Take, for example, any shared part boundary such as the boundary between parts 2 and 3.
Along these boundaries, some stencil entries reach outside of the part. If no neighbor information
is given, these entries are effectively zeroed out, i.e., they don’t participate in the discretization.
However, with the additional neighbor information, when a stencil entry reaches into a neighbor
box it is then coupled to the part described by that neighbor box information.

Another important consequence of the use of the SetNeighborPart () routine is that it can de-
clare variables on different parts as being the same. For example, the face variables on the boundary
of parts 2 and 3 are recognized as being shared by both parts (prior to the SetNeighborPart ()
call, there were two distinct sets of variables). Note also that these variables are of different types
on the two parts; on part 2 they are x-face variables, but on part 3 they are y-face variables.

For brevity, we consider only the description of the y-face stencil in Figure [3.2] i.e. the third
stencil in the figure. To do this, the stencil entries are assigned unique labels between 0 and 8 and
their “offsets” are described relative to the “center” of the stencil. This process is illustrated in
Figure Nine calls are made to the routine HYPRE_SStructStencilSetEntry (). As an example,
the call that describes stencil entry 5 in the figure is given the entry number 5, the offset (—1,0),
and the identifier for the x-face variable (the variable to which this entry couples). Recall from
Figure[3.1] the convention used for referencing variables of different types. The geometry description
uses the same convention, but with indices numbered relative to the referencing index (0, 0) for the
stencil’s center. Figure [3.6| shows the code for setting up the graph .

With the above, we now have a complete description of the nonzero structure for the matrix. The
matrix coefficients are then easily set in a manner similar to what is described in Section using
routines MatrixSetValues() and MatrixSetBoxValues() in the SStruct interface. As before,

22 CHAPTER 3. SEMI-STRUCTURED-GRID SYSTEM INTERFACE (SSTRUCT)

0 <> (00; A e

1 <= (0-1); A 1) w |® »
“ 2 <« (0)1)}.‘ 7.4 .8
S 3 — o e . f
S 4 <> , & 5703 76
- (0.0); ® § 10) ¥ e »
S 5 <> (Lop» °© 1
G 6 <~ (00); P A

7 <> (-L1; > (0-1)

8 <> (01); »

Figure 3.5: Assignment of labels and geometries to the y-face stencil in Figure Stencil offsets
are described relative to the (0,0) index for the “center” of the stencil.

there are also AddTo variants of these routines. Likewise, setting up the right-hand-side is similar
to what is described in Section See the hypre reference manual for details.

An alternative approach for describing the above problem through the interface is to use the
GraphAddEntries () routine instead of the GridSetNeighborPart() routine. In this approach,
the five parts would be explicitly “sewn” together by adding non-stencil couplings to the matrix
graph. The main downside to this approach for block-structured grid problems is that variables
along block boundaries are no longer considered to be the same variables on the corresponding
parts that share these boundaries. For example, any face variable along the boundary between
parts 2 and 3 in Figure [3.2] would represent two different variables that live on different parts.
To “sew” the parts together correctly, we would need to explicitly select one of these variables as
the representative that participates in the discretization, and make the other variable a dummy
variable that is decoupled from the discretization by zeroing out appropriate entries in the matrix.
All of these complications are avoided by using the GridSetNeighborPart () for this example.

3.2 Structured Adaptive Mesh Refinement

We now briefly discuss how to use the SStruct interface in a structured AMR application. Consider
Poisson’s equation on the simple cell-centered example grid illustrated in Figure For structured
AMR applications, each refinement level should be defined as a unique part. There are two parts
in this example: part 0 is the global coarse grid and part 1 is the single refinement patch. Note
that the coarse unknowns underneath the refinement patch (gray dots in Figure are not real
physical unknowns; the solution in this region is given by the values on the refinement patch. In
setting up the composite grid matrix [I§] for hypre the equations for these “dummy” unknowns
should be uncoupled from the other unknowns (this can easily be done by setting all off-diagonal
couplings to zero in this region).

3.2. STRUCTURED ADAPTIVE MESH REFINEMENT

H H

o
o

4)

HYPRE_SStructGraph graph;

HYPRE_SStructStencil c_stencil, x_stencil, y_stencil;
int c_var = 0, x_var = 1, y_var = 2;

int part;

/* Create the graph object */
1: HYPRE_SStructGraphCreate (MPI_COMM_WORLD, grid, &graph);

/* Set the cell-centered, x-face, and y-face stencils for each part */
for (part = 0; part < 5; part++)

{
2: HYPRE_SStructGraphSetStencil (graph, part, c_var, c_stencil);
3: HYPRE_SStructGraphSetStencil (graph, part, x_var, x_stencil);
4: HYPRE_SStructGraphSetStencil (graph, part, y_var, y_stencil);
}

/* No need to add non-stencil entries in this example */
5: HYPRE_SStructGraphAssemble(graph) ;

Figure 3.6: Test figure.

24 CHAPTER 3. SEMI-STRUCTURED-GRID SYSTEM INTERFACE (SSTRUCT)

° ° o o | =
(24) (44) ° ° °)
(7,9) (9,9)
° Y o o) o [] [] o
U N - ° ° ° °
° ° ° \\\\\\o
e ° ° ° °
| 68 (6)
° ° ° ° part 1
(1,1) (3,1)
part ()

Figure 3.7: Structured AMR grid example. Shaded regions correspond to process 0, unshaded to
process 1. The grey dots are dummy variables.

In the example, parts are distributed across the same two processes with process 0 having
the “left” half of both parts. The composite grid is then set up part-by-part by making calls to
GridSetExtents() just as was done in Section and Figure (no SetNeighborPart calls are
made in this example). Note that in the interface there is no required rule relating the indexing on
the refinement patch to that on the global coarse grid; they are separate parts and thus each has
its own index space. In this example, we have chosen the indexing such that refinement cell (2i,25)
lies in the lower left quadrant of coarse cell (i,7). Then the stencil is set up. In this example we
are using a finite volume approach resulting in the standard 5-point stencil in Figure 2.5 in both
parts.

The grid and stencil are used to define all intra-part coupling in the graph, the non-zero pattern
of the composite grid matrix. The inter-part coupling at the coarse-fine interface is described by
GraphAddEntries() calls. This coupling in the composite grid matrix is typically the composition
of an interpolation rule and a discretization formula. In this example, we use a simple piecewise
constant interpolation, i.e. the solution value in a coarse cell is equal to the solution value at the cell
center. Then the flux across a portion of the coarse-fine interface is approximated by a difference
of the solution values on each side. As an example, consider approximating the flux across the
left interface of cell (6,6) in Figure Let h be the coarse grid mesh size, and consider a local
coordinate system with the origin at the center of cell (6,6). We approximate the flux as follows

h/a o _ hu(0,0) — u(—3h/4,0)
/_h/4ux(—h/4,s)ds ~ Su(-h/4,0) ~ g i (3.2)

Q

g(UG,G — U3).

3.2. STRUCTURED ADAPTIVE MESH REFINEMENT 25

(2.3) (6,6)
o]
yemes 1——0
X
°
(3.2)

Figure 3.8: Coupling for equation at corner of refinement patch. Black lines (solid and broken) are
stencil couplings. Gray line are non-stencil couplings.

The first approximation uses the midpoint rule for the edge integral, the second uses a finite
difference formula for the derivative, and the third the piecewise constant interpolation to the
solution in the coarse cell. This means that the equation for the variable at cell (6,6) involves
not only the stencil couplings to (6,7) and (7,6) on part 1 but also non-stencil couplings to (2, 3)
and (3,2) on part 0. These non-stencil couplings are described by GraphAddEntries() calls. The
syntax for this call is simply the part and index for both the variable whose equation is being defined
and the variable to which it couples. After these calls, the non-zero pattern of the matrix (and the
graph) is complete. Note that the “west” and “south” stencil couplings simply “drop off” the part,
and are effectively zeroed out (currently, this is only supported for the HYPRE_PARCSR object type,
and these values must be manually zeroed out for other object types; see MatrixSetObjectType ()
in the reference manual).

The remaining step is to define the actual numerical values for the composite grid matrix.
This can be done by either MatrixSetValues() calls to set entries in a single equation, or by
MatrixSetBoxValues () calls to set entries for a box of equations in a single call. The syntax for
the MatrixSetValues () call is a part and index for the variable whose equation is being set and an
array of entry numbers identifying which entries in that equation are being set. The entry numbers
may correspond to stencil entries or non-stencil entries.

26

CHAPTER 3. SEMI-STRUCTURED-GRID SYSTEM INTERFACE (SSTRUCT)

Chapter 4

Finite Element Interface

4.1 Introduction

Many application codes use unstructured finite element meshes. This section describes an interface
for finite element problems, called the FEI, which is supported in hypre.

Figure 4.1: Example of an unstructured mesh.

FEI refers to a specific interface for black-box finite element solvers, originally developed in
Sandia National Lab, see [6]. It differs from the rest of the conceptual interfaces in hypre in two
important aspects: it is written in C++, and it does not separate the construction of the linear
system matrix from the solution process. A complete description of Sandia’s FEI implementation
can be obtained by contacting Alan Williams at Sandia (william@sandia.gov). A simplified version
of the FEI has been implemented at LLNL and is included in hypre. More details about this
implementation can be found in the header files of the FEI_mv/fei-base and FEI_mv/fei-hypre
directories.

27

28 CHAPTER 4. FINITE ELEMENT INTERFACE

4.2 A Brief Description of the Finite Element Interface

Typically, finite element codes contain data structures storing element connectivities, element stiff-
ness matrices, element loads, boundary conditions, nodal coordinates, etc. One of the purposes of
the FEI is to assemble the global linear system in parallel based on such local element data. We
illustrate this in the rest of the section and refer to example 10 (in the examples directory) for
more implementation details.

In hypre, one creates an instance of the FEI as follows:

LLNL_FEI_Impl *feiPtr = new LLNL_FEI_Impl (mpiComm) ;

Here mpiComm is an MPI communicator (e.g. MPI_COMM_WORLD). If Sandia’s FEI package is to be
used, one needs to define a hypre solver object first:

HYPRE_base_create (mpiComm) ;
FEI_Implementation(solver,mpiComm,rank) ;

LinearSystemCore *solver
FEI_Implementation *feiPtr

where rank is the number of the master processor (used only to identify which processor will
produce the screen outputs). The LinearSystemCore class is the part of the FEI which interfaces
with the linear solver library. It will be discussed later in Sections and

Local finite element information is passed to the FEI using several methods of the feiPtr object.
The first entity to be submitted is the field information. A field has an identifier called fieldID and
a rank or fieldSize (number of degree of freedom). For example, a discretization of the Navier
Stokes equations in 3D can consist of velocity vector having 3 degrees of freedom in every node
(vertex) of the mesh and a scalar pressure variable, which is constant over each element. If these
are the only variables, and if we assign fieldIDs 7 and 8 to them, respectively, then the finite
element field information can be set up by

nFields = 2; /* number of unknown fields */
fieldID new int[nFields]; /* field identifiers x*/
fieldSize = new int[nFields]; /* vector dimension of each field */

/* velocity (a 3D vector) */
fieldID[O0] =7;
fieldSize[0] = 3;

/* pressure (a scalar function) */
fieldID[1] = 8;
fieldSize[1] 1;

feiPtr -> initFields(nFields, fieldSize, fieldID);

Once the field information has been established, we are ready to initialize an element block.
An element block is characterized by the block identifier, the number of elements, the number of
nodes per element, the nodal fields and the element fields (fields that have been defined previously).
Suppose we use 1000 hexahedral elements in the element block 0, the setup consists of

4.2. A BRIEF DESCRIPTION OF THE FINITE ELEMENT INTERFACE 29

elemB1kID = O; /* identifier for a block of elements */
nElems = 1000; /* number of elements in the block */
elemNNodes = 8; /* number of nodes per element */

/* nodal-based field for the velocity */

nodeNFields =1;
nodeFieldIDs = new[nodeNFields];
nodeFieldIDs[0] = fieldID[O0];

/* element-based field for the pressure */

elemNFields =1;
elemFieldIDs = newl[elemNFields];
elemFieldIDs[0] = fieldIDI[1];

feiPtr -> initElemBlock(elemBlkID, nElems, elemNNodes, nodeNFields,
nodeFieldIDs, elemNFields, elemFieldIDs, 0);

The last argument above specifies how the dependent variables are arranged in the element matrices.
A value of 0 indicates that each variable is to be arranged in a separate block (as opposed to
interleaving).

In a parallel environment, each processor has one or more element blocks. Unless the element
blocks are all disjoint, some of them share a common set of nodes on the subdomain boundaries. To
facilitate setting up interprocessor communications, shared nodes between subdomains on different
processors are to be identified and sent to the FEI. Hence, each node in the whole domain is assigned
a unique global identifier. The shared node list on each processor contains a subset of the global
node list corresponding to the local nodes that are shared with the other processors. The syntax
for setting up the shared nodes is

feiPtr -> initSharedNodes(nShared, sharedIDs, sharedLengs, sharedProcs);
This completes the initialization phase, and a completion signal is sent to the FEI via
feiPtr -> initComplete();

Next, we begin the load phase. The first entity for loading is the nodal boundary conditions.
Here we need to specify the number of boundary equations and the boundary values given by
alpha, beta, and gamma. Depending on whether the boundary conditions are Dirichlet, Neumann,
or mixed, the three values should be passed into the FEI accordingly.

feiPtr -> loadNodeBCs(nBCs, BCEqn, fieldID, alpha, beta, gamma);

The element stiffness matrices are to be loaded in the next step. We need to specify the element
number 4, the element block to which element i belongs, the element connectivity information, the
element load, and the element matrix format. The element connectivity specifies a set of 8 node
global IDs (for hexahedral elements), and the element load is the load or force for each degree of
freedom. The element format specifies how the equations are arranged (similar to the interleaving
scheme mentioned above). The calling sequence for loading element stiffness matrices is

30 CHAPTER 4. FINITE ELEMENT INTERFACE

for (i = 0; i < nElems; i++)
feiPtr -> sumInElem(elemBlkID, elemID, elemConn[i], elemStiff[i],
elemloads[i], elemFormat);

To complete the assembling of the global stiffness matrix and the corresponding right hand side, a
signal is sent to the FEI via

feiPtr -> loadComplete();

Chapter 5

Linear-Algebraic System Interface
(1J)

The IJ interface described in this chapter is the lowest common denominator for specifying linear
systems in hypre. This interface provides access to general sparse-matrix solvers in hypre, not to
the specialized solvers that require more problem information.

5.1 1J Matrix Interface

As with the other interfaces in hypre, the IJ interface expects to get data in distributed form because
this is the only scalable approach for assembling matrices on thousands of processes. Matrices are
assumed to be distributed by blocks of rows as follows:

Ag
A

N (5.1)
Ap_1

In the above example, the matrix is distributed accross the P processes, 0,1,..., P — 1 by blocks
of rows. Each submatrix A4, is “owned” by a single process and its first and last row numbers are
given by the global indices ilower and iupper in the Create() call below.

The following example code illustrates the basic usage of the IJ interface for building matrices:

MPI_Comm comm;
HYPRE_IJMatrix ij_matrix;
HYPRE_ParCSRMatrix parcsr_matrix;
int ilower, iupper;
int jlower, jupper;
int nrows;

31

32 CHAPTER 5. LINEAR-ALGEBRAIC SYSTEM INTERFACE (1J)

int *ncols;
int *TOWS;
int *cols;
double *values;

HYPRE_IJMatrixCreate(comm, ilower, iupper, jlower, jupper, &ij_matrix);
HYPRE_IJMatrixSetObjectType(ij_matrix, HYPRE_PARCSR);
HYPRE_IJMatrixInitialize(ij_matrix);

/* set matrix coefficients */
HYPRE_IJMatrixSetValues(ij_matrix, nrows, ncols, rows, cols, values);

/* add-to matrix cofficients, if desired */
HYPRE_IJMatrixAddToValues(ij_matrix, nrows, ncols, rows, cols, values);

HYPRE_IJMatrixAssemble(ij_matrix);
HYPRE_IJMatrixGetObject(ij_matrix, (void **) &parcsr_matrix);

The Create() routine creates an empty matrix object that lives on the comm communicator. This
is a collective call (i.e., must be called on all processes from a common synchronization point),
with each process passing its own row extents, ilower and iupper. The row partitioning must be
contiguous, i.e., iupper for process i must equal ilower—1 for process i+1. Note that this allows
matrices to have 0- or 1-based indexing. The parameters jlower and jupper define a column
partitioning, and should match ilower and iupper when solving square linear systems. See the
Reference Manual for more information.

The SetObjectType() routine sets the underlying matrix object type to HYPRE_PARCSR (this
is the only object type currently supported). The Initialize() routine indicates that the matrix
coefficients (or values) are ready to be set. This routine may or may not involve the allocation of
memory for the coefficient data, depending on the implementation. The optional SetRowSizes ()
and SetDiagOffdSizes() routines mentioned later in this chapter and in the Reference Manual,
should be called before this step.

The SetValues () routine sets matrix values for some number of rows (nrows) and some number
of columns in each row (ncols). The actual row and column numbers of the matrix values to be
set are given by rows and cols. After the coefficients are set, they can be added to with an AddTo ()
routine. Each process should set only those matrix values that it “owns” in the data distribution.

The Assemble() routine is a collective call, and finalizes the matrix assembly, making the
matrix “ready to use”. The GetObject () routine retrieves the built matrix object so that it can
be passed on to hypre solvers that use the ParCSR internal storage format. Note that this is not
an expensive routine; the matrix already exists in ParCSR storage format, and the routine simply
returns a “handle” or pointer to it. Although we currently only support one underlying data storage
format, in the future several different formats may be supported.

5.2. 1J VECTOR INTERFACE 33

One can preset the row sizes of the matrix in order to reduce the execution time for the
matrix specification. One can specify the total number of coefficients for each row, the number of
coefficients in the row that couple the diagonal unknown to (Diag) unknowns in the same processor
domain, and the number of coefficients in the row that couple the diagonal unknown to (0ffd)
unknowns in other processor domains:

HYPRE_IJMatrixSetRowSizes(ij_matrix, sizes);
HYPRE_IJMatrixSetDiagOffdSizes(matrix, diag_sizes, offdiag_sizes);

Once the matrix has been assembled, the sparsity pattern cannot be altered without completely
destroying the matrix object and starting from scratch. However, one can modify the matrix values
of an already assembled matrix. To do this, first call the Initialize () routine to re-initialize the
matrix, then set or add-to values as before, and call the Assemble () routine to re-assemble before
using the matrix. Re-initialization and re-assembly are very cheap, essentially a no-op in the current
implementation of the code.

5.2 1J Vector Interface

The following example code illustrates the basic usage of the IJ interface for building vectors:

MPI_Comm comm;
HYPRE_IJVector ij_vector;
HYPRE_ParVector par_vector;

int jlower, jupper;
int nvalues;

int *indices;

double *values;

HYPRE_IJVectorCreate(comm, jlower, jupper, &ij_vector);
HYPRE_IJVectorSetObjectType(ij_vector, HYPRE_PARCSR) ;
HYPRE_IJVectorInitialize(ij_vector);

/* set vector values */
HYPRE_IJVectorSetValues(ij_vector, nvalues, indices, values);

HYPRE_IJVectorAssemble(ij_vector);
HYPRE_IJVectorGetObject(ij_vector, (void **) &par_vector);

The Create () routine creates an empty vector object that lives on the comm communicator. This is
a collective call, with each process passing its own index extents, jlower and jupper. The names

34 CHAPTER 5. LINEAR-ALGEBRAIC SYSTEM INTERFACE (1J)

of these extent parameters begin with a j because we typically think of matrix-vector multiplies
as the fundamental operation involving both matrices and vectors. For matrix-vector multiplies,
the vector partitioning should match the column partitioning of the matrix (which also uses the j
notation). For linear system solves, these extents will typically match the row partitioning of the
matrix as well.

The SetObjectType () routine sets the underlying vector storage type to HYPRE_PARCSR (this
is the only storage type currently supported). The Initialize() routine indicates that the vector
coefficients (or values) are ready to be set. This routine may or may not involve the allocation of
memory for the coefficient data, depending on the implementation.

The SetValues () routine sets the vector values for some number (nvalues) of indices. Each
process should set only those vector values that it “owns” in the data distribution.

The Assemble() routine is a trivial collective call, and finalizes the vector assembly, making
the vector “ready to use”. The GetObject () routine retrieves the built vector object so that it can
be passed on to hypre solvers that use the ParVector internal storage format.

Vector values can be modified in much the same way as with matrices by first re-initializing the
vector with the Initialize() routine.

5.3 A Scalable Interface

As explained in the previous sections, problem data is passed to the hypre library in its distributed
form. However, as is typically the case for a parallel software library, some information regarding
the global distribution of the data will be needed for hypre to perform its function. In particular,
a solver algorithm requires that a processor obtain “nearby” data from other processors in order
to complete the solve. While a processor may easily determine what data it needs from other
processors, it may not know which processor owns the data it needs. Therefore, processors must
determine their communication partners, or neighbors.

The straightforward approach to determining neighbors involves constructing a global partition
of the data which requires O(P) data storage. This storage requirement (as well the costs of many of
the associated algorithms that access the storage) is not scalable for machines such as BlueGene/L
with tens of thousands of processors. The problem of determining inter-processor communication
(in the absence of a global description of the data) in a scalable manner is addressed in [2]. When
using hypre on many thousands of processors, compiling the library with the “no global partition”
option as detailed in Section improves scalability as shown in [2]. Note that this optimization
is only recommended when using at least several thousand of processors and is most beneficial when
using tens of thousands of processors.

Chapter 6

Solvers and Preconditioners

There are several solvers available in hypre via different conceptual interfaces (see Table . Note
that there are a few additional solvers and preconditioners not mentioned in the table that can be
used only through the FEI interface and are described in Paragraph 6.14. The procedure for setup
and use of solvers and preconditioners is largely the same. We will refer to them both as solvers
in the sequel except when noted. In normal usage, the preconditioner is chosen and constructed
before the solver, and then handed to the solver as part of the solver’s setup. In the following, we
assume the most common usage pattern in which a single linear system is set up and then solved
with a single righthand side. We comment later on considerations for other usage patterns.

Setup:

1. Pass to the solver the information defining the problem. In the typical user cycle, the
user has passed this information into a matrix through one of the conceptual interfaces prior
to setting up the solver. In this situation, the problem definition information is then passed
to the solver by passing the constructed matrix into the solver. As described before, the
matrix and solver must be compatible, in that the matrix must provide the services needed
by the solver. Krylov solvers, for example, need only a matrix-vector multiplication. Most
preconditioners, on the other hand, have additional requirements such as access to the matrix
coefficients.

2. Create the solver/preconditioner via the Create() routine.

3. Choose parameters for the preconditioner and/or solver. Parameters are chosen
through the Set () calls provided by the solver. Throughout hypre, we have made our best
effort to give all parameters reasonable defaults if not chosen. However, for some precondi-
tioners/solvers the best choices for parameters depend on the problem to be solved. We give
recommendations in the individual sections on how to choose these parameters. Note that in
hypre, convergence criteria can be chosen after the preconditioner/solver has been setup. For
a complete set of all available parameters see the Reference Manual.

35

36 CHAPTER 6. SOLVERS AND PRECONDITIONERS

System Interfaces
Solvers Struct ‘ SStruct ‘ FEI ‘ 1J

Jacobi X X
SMG X
PFMG X
SysPFMG
Split

FAC

Maxwell
BoomerAMG
AMS

MLI
ParaSails
Euclid
PILUT

PCG
GMRES
FlexGMRES
LGMRES
BiCGSTAB
Hybrid

I I e il o I R i e s i SIS e il
SRR R Il el
S I e Res i Sl o

Sl e

X
X

Table 6.1: Current solver availability via hypre conceptual interfaces.

4. Pass the preconditioner to the solver. For solvers that are not preconditioned, this step
is omitted. The preconditioner is passed through the SetPrecond () call.

5. Set up the solver. This is just the Setup() routine. At this point the matrix and right
hand side is passed into the solver or preconditioner. Note that the actual right hand side is
not used until the actual solve is performed.

At this point, the solver/preconditioner is fully constructed and ready for use.

Use:

1. Set convergence criteria. Convergence can be controlled by the number of iterations,
as well as various tolerances such as relative residual, preconditioned residual, etc. Like all
parameters, reasonable defaults are used. Users are free to change these, though care must be
taken. For example, if an iterative method is used as a preconditioner for a Krylov method,
a constant number of iterations is usually required.

2. Solve the system. This is just the Solve() routine.

6.1. SMG 37

Finalize:

1. Free the solver or preconditioner. This is done using the Destroy () routine.

Synopsis

In general, a solver (let’s call it SOLVER) is set up and run using the following routines, where A is
the matrix, b the right hand side and x the solution vector of the linear system to be solved:

/* Create Solver */
int HYPRE_SOLVERCreate(MPI_COMM_WORLD, &solver);

/* set certain parameters if desired */
HYPRE_SOLVERSetTol(solver, 1.e-8);

/* Set up Solver */
HYPRE_SOLVERSetup(solver, A, b, x);
/* Solve the system */
HYPRE_SOLVERSolve(solver, A, b, x);
/* Destroy the solver */
HYPRE_SOLVERDestroy(solver);

In the following sections, we will give brief descriptions of the available hypre solvers with some
suggestions on how to choose the parameters as well as references for users who are interested in
a more detailed description and analysis of the solvers. A complete list of all routines that are
available can be found in the reference manual.

6.1 SMG

SMG is a parallel semicoarsening multigrid solver for the linear systems arising from finite difference,
finite volume, or finite element discretizations of the diffusion equation,

V- (DVu)+ou=f (6.1)

on logically rectangular grids. The code solves both 2D and 3D problems with discretization stencils
of up to 9-point in 2D and up to 27-point in 3D. See [21), [3], [7] for details on the algorithm and its
parallel implementation/performance.

SMG is a particularly robust method. The algorithm semicoarsens in the z-direction and uses
plane smoothing. The xy plane-solves are effected by one V-cycle of the 2D SMG algorithm, which
semicoarsens in the y-direction and uses line smoothing.

38 CHAPTER 6. SOLVERS AND PRECONDITIONERS

6.2 PFMG

PFMG is a parallel semicoarsening multigrid solver similar to SMG. See [I], [7] for details on the
algorithm and its parallel implementation/performance.

The main difference between the two methods is in the smoother: PFMG uses simple pointwise
smoothing. As a result, PFMG is not as robust as SMG, but is much more efficient per V-cycle.

6.3 SysPFMG

SysPFMG is a parallel semicoarsening multigrid solver for systems of elliptic PDEs. It is a gener-
alization of PFMG, with the interpolation defined only within the same variable. The relaxation is
of nodal type- all variables at a given point location are simultaneously solved for in the relaxation.

Although SysPFMG is implemented through the SStruct interface, it can be used only for
problems with one grid part. Ideally, the solver should handle any of the seven variable types (cell-,
node-, xface-, yface-, zface-, xedge-, yedge-, and zedge-based). However, it has been completed only
for cell-based variables.

6.4 SplitSolve

SplitSolve is a parallel block Gauss-Seidel solver for semi-structured problems with multiple parts.
For problems with only one variable, it can be viewed as a domain-decomposition solver with no
grid overlapping.

Consider a multiple part problem given by the linear system Az = b. Matrix A can be decom-
posed into a structured intra-variable block diagonal component M and a component N consisting
of the inter-variable blocks and any unstructured connections between the parts. SplitSolve per-
forms the iteration

Tyl = M_l(b + Nl‘k),

where M1 is a decoupled block-diagonal V(1,1) cycle, a separate cycle for each part and variable
type. There are two V-cycle options, SMG and PFMG.

6.5 FAC

FAC is a parallel fast adaptive composite grid solver for finite volume, cell-centred discretizations of
smooth diffusion coefficient problems. To be precise, it is a FACx algorithm since the patch solves
consist of only relaxation sweeps. For details of the basic overall algorithms, see [I8]. Algorithmic
particularities include formation of non-Galerkin coarse-grid operators (i.e., coarse-grid operators
underlying refinement patches are automatically generated) and non-stored linear/constant inter-
polation /restriction operators. Implementation particularities include a processor redistribution
of the generated coarse-grid operators so that intra-level communication between adaptive mesh
refinement (AMR) levels during the solve phase is kept to a minimum. This redistribution is hidden
from the user.

6.6. MAXWELL 39

The user input is essentially a linear system describing the composite operator, and the refine-
ment factors between the AMR levels. To form this composite linear system, the AMR grid is
described using semi-structured grid parts. FEach AMR level grid corresponds to a separate part
so that this level grid is simply a collection of boxes, all with the same refinement factor, i.e., it is
a struct grid. However, several restrictions are imposed on the patch (box) refinements. First, a
refinement box must cover all underlying coarse cells- i.e., refinement of a partial coarse cell is not
permitted. Also, the refined/coarse indices must follow a mapping: with [ry, 7o, 73] denoting the
refinement factor and [a1, ag, ag] X [b1, b2, b3] denoting the coarse subbox to be refined, the mapping
to the refined patch is

[r1 % a1, e % ag,r3 *as] X [r1x by +11 — L,rgxbo +1ro — 1,73 x by + 73 — 1].

With the AMR grid constructed under these restrictions, the composite matrix can be formed.
Since the AMR levels correspond to semi-structured grid parts, the composite matrix is a semi-
structured matrix consisting of structured components within each part, and unstructured com-
ponents describing the coarse-to-fine/fine-to-coarse connections. The structured and unstructured
components can be set using stencils and the HYPRE_SStructGraphAddEntries routine, respec-
tively. The matrix coefficients can be filled after setting these non-zero patterns. Between each
pair of successive AMR levels, the coarse matrix underlying the refinement patch must be the
identity and the corresponding rows of the rhs must be zero. These can performed using routines
HYPRE_SStructFACZeroCFSten (to zero off the stencil values reaching from coarse boxes into
refinement boxes), HYPRE_SStructFACZeroFCSten (to zero off the stencil values reaching from
refinement boxes into coarse boxes), HYPRE_SStructFACZeroAMRMatrixData (to set the identity
at coarse grid points underlying a refinement patch), and HYPRE_SStructFACZeroAMRVectorData
(to zero off a vector at coarse grid points underlying a refinement patch). These routines can sim-
plify the user’s matrix setup. For example, consider two successive AMR levels with the coarser
level consisting of one box and the finer level consisting of a collection of boxes. Rather than dis-
tinguishly setting the stencil values and the identity in the appropriate locations, the user can set
the stencil values on the whole coarse grid using the HYPRE_SStructMatrixSetBoxValues routine
and then zero off the appropriate values using the above zeroing routines.

The coarse matrix underlying these patches are algebraically generated by operator-collapsing
the refinement patch operator and the fine-to-coarse coefficients (this is why stencil values reaching
out of a part must be zeroed). This matrix is re-distributed so that each processor has all of its
coarse-grid operator.

To solve the coarsest AMR level, a PFMG V cycle is used. Note that a minimum of two AMR
levels are needed for this solver.

6.6 Maxwell

Maxwell is a parallel solver for edge finite element discretization of the curl-curl formulation of the
Maxwell equation

VxaVXxE+BE=f0(6>0

40 CHAPTER 6. SOLVERS AND PRECONDITIONERS

on semi-structured grids. Details of the algorithm can be found in [14]. The solver can be viewed
as an operator-dependent multiple-coarsening algorithm for the Helmholtz decomposition of the
error correction. Input to this solver consist of only the linear system and a gradient operator. In
fact, if the orientation of the edge elements conforms to a lexigraphical ordering of the nodes of the
grid, then the gradient operator can be generated with the routine HYPRE_MaxwellGrad: at grid
points (7, j, k) and (i — 1,7, k), the produced gradient operator takes values 1 and —1 respectively,
which is the correct gradient operator for the appropriate edge orientation. Since the gradient
operator is normalized (i.e., h independent) the edge finite element must also be normalized in the
discretization.

This solver is currently developed for perfectly conducting boundary condition (Dirichlet).
Hence, the rows and columns of the matrix that corresponding to the grid boundary must be set to
the identity or zeroed off. This can be achieved with the routines HY PRE_SStructMaxwellPhysBdy
and HYPRE_SStructMaxwellEliminateRowsCols. The former identifies the ranks of the rows that
are located on the grid boundary, and the latter adjusts the boundary rows and cols. As usual,
the rhs of the linear system must also be zeroed off at the boundary rows. This can be done using
HYPRE_SStructMaxwellZeroVector.

With the adjusted linear system and a gradient operator, the user can form the Maxwell
multigrid solver using several different edge interpolation schemes. For problems with smooth
coefficients, the natural Nedelec interpolation operator can be used. This is formed by calling
HYPRE_SStructMaxwellSet Constant Coef with the flag> 0 before setting up the solver, otherwise
the default edge interpolation is an operator-collapsing/element-agglomeration scheme. This is suit-
able for variable coefficients. Also, before setting up the solver, the user must pass the gradient oper-
ator, whether user or HYPRE_MaxwellGrad generated, with HYPRE_SStructMaxwellSetGrad. Af-
ter these preliminary calls, the Maxwell solver can be setup by calling HY PRE_SStructMaxwellSetup.

There are two solver cycling schemes that can be used to solve the linear system. To describe
these, one needs to consider the augmented system operator

A6€ Aen
A= , (6.2)
ATL@ ATLTL

where Ae. is the stiffness matrix corresponding to the above curl-curl formulation, A, is the nodal
Poisson operator created by taking the Galerkin product of A.. and the gradient operator, and
Ape and A., are the nodal-edge coupling operators (see [14]). The algorithm for this Maxwell
solver is based on forming a multigrid hierarchy to this augmented system using the block-diagonal

interpolation operator
b_ P, 0 |
0 P,

where P, and P, are respectively the edge and nodal interpolation operators determined individ-
ually from A.. and A,,. Taking a Galerkin product between A and P produces the next coarse
augmented operator, which also has the nodal-edge coupling operators. Applying this procedure re-
cursively produces nodal-edge coupling operators at all levels. Now, the first solver cycling scheme,

6.7. HYBRID 41

HYPRE_SStructMaxwellSolve, keeps these coupling operators on all levels of the V-cycle. The
second, cheaper scheme, HYPRE_SStructMaxwellSolve2, keeps the coupling operators only on the
finest level, i.e., separate edge and nodal V-cycles that couple only on the finest level.

6.7 Hybrid

The hybrid solver is designed to detect whether a multigrid preconditioner is needed when solving
a linear system and possibly avoid the expensive setup of a preconditioner if a system can be solved
efficiently with a diagonally scaled Krylov solver, e.g. a strongly diagonally dominant system.
It first uses a diagonally scaled Krylov solver, which can be chosen by the user (the default is
conjugate gradient, but one should use GMRES if the matrix of the linear system to be solved is
nonsymmetric). It monitors how fast the Krylov solver converges. If there is not sufficient progress,
the algorithm switches to a preconditioned Krylov solver.

If used through the Struct interface, the solver is called StructHybrid and can be used with the
preconditioners SMG and PFMG (default). It is called ParCSRHybrid, if used through the IJ inter-
face and is used here with Boomer AMG. The user can determine the average convergence speed by
setting a convergence tolerance 0 < 6 < 1 via the routine HYPRE_StructHybridSet ConvergenceTol
or HYPRE_StructParCSRHybridSetConvergenceTol. The default setting is 0.9.

[l
. . . ||r0|| . .
where r; = b — Ax; is the i-th residual. Convergence is considered too slow when

<1 ~_pi — pi—1]

max(p;, pi—1)

1/i
The average convergence factor p; = () is monitored within the chosen Krylov solver,

) pi > 0. (6.3)

When this condition is fulfilled the hybrid solver switches from a diagonally scaled Krylov solver
to a preconditioned solver.

6.8 BoomerAMG

BoomerAMG is a parallel implementation of the algebraic multigrid method [20]. It can be used
both as a solver or as a preconditioner. The user can choose between various different parallel
coarsening techniques, interpolation and relaxation schemes. See [10, 26] for a detailed description
of the coarsening algorithms, interpolation and relaxation schemes as well as numerical results.

6.8.1 Parameter Options

Various BoomerAMG functions and options are mentioned below. However, for a complete listing
and description of all available functions, see the reference manual.
BoomerAMG’s Create function differs from the synopsis in that it has only one parameter
HYPRE_BoomerAMGCreate (HYPRE_Solver *solver). It uses the communicator of the matrix A.
Coarsening can be set by the user using the function HYPRE BoomerAMGSetCoarsenType. Vari-
ous coarsening techniques are available:

42

CHAPTER 6. SOLVERS AND PRECONDITIONERS

the Cleary-Luby-Jones-Plassman (CLJP) coarsening,

the Falgout coarsening which is a combination of CLJP and the classical RS coarsening
algorithm (default),

CGC and CGC-E coarsenings [9] §],

PMIS and HMIS coarsening algorithms which lead to coarsenings with lower complexities [5]
as well as

aggressive coarsening, which can be applied to any of the coarsening techniques mentioned
above and thus achieving much lower complexities and lower memory use [22].

To use aggressive coarsening the user has to set the number of levels to which he wants to apply
aggressive coarsening (starting with the finest level) via HYPRE_BoomerAMGSetAggNumLevels. Since
aggressive coarsening requires long range interpolation, multipass interpolation is always used on
levels with aggressive coarsening.

Various interpolation techniques can be set using HYPRE_BoomerAMGSetInterpType:

the “classical” interpolation as defined in [20] (default),
direct interpolation [22],

standard interpolation [22],

multipass interpolation [22],

an extended “classical” interpolation, which is a long range interpolation and is recommended
to be used with PMIS and HMIS coarsening for harder problems,

Jacobi interpolation [22],

the “classical” interpolation modified for hyperbolic PDEs.

Jacobi interpolation is only use to improve certain interpolation operators and can be used with
HYPRE_BoomerAMGSetPostInterpType. Since some of the interpolation operators might generate
large stencils, it is often possible and recommended to control complexity and truncate the interpo-
lation operators using HYPRE_BoomerAMGSetTruncFactor and/or HYPRE_BoomerAMGSetPMaxElmts,
or HYPRE_BoomerAMGSetJacobiTruncTheshold (for Jacobi interpolation only).

Various relaxation techniques are available:

weighted Jacobi relaxation,
a hybrid Gauss-Seidel / Jacobi relaxation scheme,
a symmetric hybrid Gauss-Seidel / Jacobi relaxation scheme, and

hybrid block and Schwarz smoothers [25],

6.9. AMS 43

e ILU and approximate inverse smoothers.

Point relaxation schemes can be set using HYPRE_BoomerAMGSetRelaxType or, if one wants to specif-
ically set the up cycle, down cycle or the coarsest grid, with HYPRE_BoomerAMGSetCycleRelaxType.
To use the more complicated smoothers, e.g. block, Schwarz, ILU smoothers, it is necessary to use
HYPRE_BoomerAMGSetSmoothType and HYPRE_BoomerAMGSetSmoothNumLevels. There are further
parameter choices for the individual smoothers, which are described in the reference manual. The
default relaxation type is hybrid Gauss-Seidel with CF-relaxation (relax first the C-, then the F-
points) on the down cycle and FC-relaxation on the up-cycle. Note that if BoomerAMG is used
as a preconditioner for comjugate gradient, it is necessary to use a symmetric smoother such as
weighted Jacobi or hybrid symmetric Gauss-Seidel.

If the users wants to solve systems of PDEs and can provide information on which variables
belong to which function, BoomerAMG’s systems AMG version can also be used. Functions
that enable the user to access the systems AMG version are HYPRE_BoomerAMGSetNumFunctions,
HYPRE_BoomerAMGSetDofFunc and HYPRE BoomerAMGSetNodal.

For best performance, it might be necessary to set certain parameters, which will affect both
coarsening and interpolation. One important parameter is the strong threshold, which can be set
using the function HYPRE_BoomerAMGSetStrongThreshold. The default value is 0.25, which ap-
pears to be a good choice for 2-dimensional problems and the low complexity coarsening algorithms.
A better choice for 3-dimensional problems appears to be 0.5, if one uses the default coarsening al-
gorithm or CLJP. However, the choice of the strength threshold is problem dependent and therefore
there could be better choices than the two suggested ones.

6.9 AMS

AMS (Auxiliary space Maxwell Solver) is a parallel unstructured Maxwell solver for edge finite
element discretizations of the variational problem

Findue Vy, : (aV xu,Vxv)+ (fu,v)=(fv), for all v.e Vy,. (6.4)

Here V), is the lowest order Nedelec (edge) finite element space, and o > 0 and 3 > 0 are scalar, or
SPD matrix coefficients. AMS was designed to be scalable on problems with variable coefficients,
and allows for 8 to be zero in part or the whole domain. In either case the resulting problem is
only semidefinite, and for solvability the right-hand side should be chosen to satisfy compatibility
conditions.

AMS is based on the auxiliary space methods for definite Maxwell problems proposed in [11].
For more details, see [17, [16].

6.9.1 Overview

Let A and b be the stiffness matrix and the load vector corresponding to (6.4). Then the resulting
linear system of interest reads,
Ax=Dh. (6.5)

44 CHAPTER 6. SOLVERS AND PRECONDITIONERS

The coefficients a and [are naturally associated with the “stiffness” and “mass” terms of A.
Besides A and b, AMS requires the following additional user input:

1. The discrete gradient matrix G representing the edges of the mesh in terms of its vertices.
G has as many rows as the number of edges in the mesh, with each row having two nonzero
entries: +1 and —1 in the columns corresponding to the vertices composing the edge. The sign
is determined based on the orientation of the edge. We require that G includes all (interior
and boundary) edges and vertices.

2. The representations of the constant vector fields (1,0,0),(0,1,0) and (0,0, 1) in the V}, basis,
given as three vectors: G, Gy, and G,. Note that since no boundary conditions are imposed
on G, the above vectors can be computed as G, = Gz, Gy = Gy and G, = Gz, where z, y,
and z are vectors representing the coordinates of the vertices of the mesh.

In addition to the above quantities, AMS can utilize the following (optional) information:

(3.) The Poisson matrices A, and Ag, corresponding to assembling of the forms (a Vu, Vv) and
(6 Vu, Vv) using standard linear finite elements on the same mesh.

Internally, AMS proceeds with the construction of the following additional objects:

e Ac — a matrix associated with the mass term which is either GTAG, or the Poisson matrix
Ag (if given).

e IT — the matrix representation of the interpolation operator from vector linear to edge finite
elements.

e A — a matrix associated with the stiffness term which is either II” AIT or a block-diagonal
matrix with diagonal blocks A, (if given).

e B and By — efficient (AMG) solvers for Ag and Ajy.

The solution procedure then is a three-level method using smoothing in the original edge space
and subspace corrections based on Bg and Bry. We can employ a number of options here utilizing
various combinations of the smoother and solvers in additive or multiplicative fashion. If (3 is
identically zero one can skip the subspace correction associated with G, in which case the solver is
a two-level method.

6.9.2 Sample Usage

AMS can be used either as a solver or as a preconditioner. Below we list the sequence of hypre calls
needed to create and use it as a solver. We start with the allocation of the HYPRE_Solver object:

HYPRE_Solver solver;
HYPRE_AMSCreate(&solver) ;

6.9. AMS 45

Next, we set a number of solver parameters. Some of them are optional, while others are
necessary in order to perform the solver setup.

AMS offers the option to set the space dimension. By default we consider the dimension to be
3. The only other option is 2, and it can be set with the function given below. We note that a 3D
solver will still work for a 2D problem, but it will be slower and will require more memory than
necessary.

HYPRE_AMSSetDimension(solver, dim);

The user is required to provide the discrete gradient matrix G. AMS expects a matrix defined
on the whole mesh with no boundary edges/nodes excluded. It is essential to not impose any
boundary conditions on G. Regardless of which hypre conceptual interface was used to construct
G, one can obtain a ParCSR version of it. This is the expected format in the following function.

HYPRE_AMSSetDiscreteGradient (solver, G);

In addition to GG, we need one additional piece of information in order to construct the solver.
The user has the option to choose either the coordinates of the vertices in the mesh or the repre-
sentations of the constant vector fields in the edge element basis. In both cases three hypre parallel
vectors should be provided. For 2D problems, the user can set the third vector to NULL. The
corresponding function calls read:

HYPRE_AMSSetCoordinateVectors(solver,x,y,z);
or

HYPRE_AMSSetEdgeConstantVectors(solver,
one_zero_zero,
Zero_one_zero,
zero_zero_one) ;

The vectors one_zero_zero, zero_one_zero and zero_zero_one above correspond to the constant
vector fields (1,0,0), (0,1,0) and (0,0,1).

The remaining solver parameters are optional. For example, the user can choose a different
cycle type by calling

HYPRE_AMSSetCycleType(solver, cycle_type); /* default value: 1 */
The available cycle types in AMS are:
e cycle_type=1: multiplicative solver (01210)
e cycle_type=2: additive solver (0+ 1+ 2)
e cycle_type=3: multiplicative solver (02120)

e cycle_type=4: additive solver (010 + 2)

46 CHAPTER 6. SOLVERS AND PRECONDITIONERS

e cycle_type=5: multiplicative solver (0102010)

e cycle_type=6: additive solver (1 4 020)

e cycle_type=7: multiplicative solver (0201020)

e cycle_type=8: additive solver (0(1 + 2)0)

e cycle_type=11: multiplicative solver (013454310)
e cycle_type=12: additive solver (0+1+3+4+5)
e cycle_type=13: multiplicative solver (034515430)
e cycle_type=14: additive solver (01(3 4+ 4 + 5)10)

Here we use the following convention for the three subspace correction methods: 0 refers to smooth-
ing, 1 stands for BoomerAMG based on Bg, and 2 refers to a call to BoomerAMG for Bry. The
values 3, 4 and 5 refer to the scalar subspaspaces corresponding to the x, y and z components of
I1.

The abbreviation xyyz for z,y,z € {0, 1,2,3, 4,5} refers to a multiplicative subspace correction
based on solvers z, y, y, and z (in that order). The abbreviation z+y+ z stands for an additive sub-
space correction method based on x, y and z solvers. The additive cycles are meant to be used only
when AMS is called as a preconditioner. In our experience the choices cycle_type=1,5,8,11,13
often produced fastest solution times, while cycle_type=7 resulted in smallest number of iterations.

Additional solver parameters, as the maximum number of iterations, the convergence tolerance
and the output level, can be set with

HYPRE_AMSSetMaxIter(solver, maxit); /* default value: 20 */
HYPRE_AMSSetTol (solver, tol); /* default value: le-6 */
HYPRE_AMSSetPrintLevel(solver, print); /* default value: 1 */

More advanced parameters, affecting the smoothing and the internal AMG solvers, can be set
with the following three functions:

HYPRE_AMSSetSmoothingOptions(solver, 2, 1, 1.0, 1.0);
HYPRE_AMSSetAlphaAMGOptions(solver, 10, 1, 3, 0.25, 0, 0);
HYPRE_AMSSetBetaAMGOptions(solver, 10, 1, 3, 0.25, 0, 0);

For (singular) problems where § = 0 in the whole domain, different (in fact simpler) version of
the AMS solver is offered. To allow for this simplification, use the following hypre call

HYPRE_AMSSetBetaPoissonMatrix(solver, NULL);

If 3 is zero only in parts of the domain, the problem is still singular, but the AMS solver will try
to detect this and construct a non-singular preconditioner.

Two additional matrices are constructed in the setup of the AMS method—one corresponding
to the coefficient o and another corresponding to 3. This may lead to prohibitively high memory

6.9. AMS 47

requirements, and the next two function calls may help to save some memory. For example, if the
Poisson matrix with coefficient 5 (denoted by Abeta) is available then one can avoid one matrix
construction by calling

HYPRE_AMSSetBetaPoissonMatrix(solver, Abeta);

Similarly, if the Poisson matrix with coefficient « is available (denoted by Aalpha) the second
matrix construction can also be avoided by calling

HYPRE_AMSSetAlphaPoissonMatrix(solver, Aalpha);
Note the following regarding these functions:

e Both of them change their input. More specifically, the diagonal entries of the input matrix
corresponding to eliminated degrees of freedom (due to essential boundary conditions) are
penalized.

e It is assumed that thei essential boundary conditions of A, Abeta and Aalpha are on the
same part of the boundary.

e HYPRE_AMSSetAlphaPoissonMatrix forces the AMS method to use a simpler, but weaker
(in terms of convergence) method. With this option, the multiplicative AMS cycle is not
guaranteed to converge with the default parameters. The reason for this is the fact the solver
is not variationally obtained from the original matrix (it utilizes the auxiliary Poisson-like
matrices Abeta and Aalpha). Therefore, it is recommended in this case to use AMS as
preconditioner only.

After the above calls, the solver is ready to be constructed. The user has to provide the stiffness
matrix A (in ParCSR format) and the hypre parallel vectors b and x. (The vectors are actually
not used in the current AMS setup.) The setup call reads,

HYPRE_AMSSetup(solver, A, b, x);

It is important to note the order of the calling sequence. For example, do not call HYPRE_AMSSetup

before calling HYPRE_AMSSetDiscreteGradient and one of the functions HYPRE_AMSSetCoordinateVectors
or HYPRE_AMSSetEdgeConstantVectors.

Once the setup has completed, we can solve the linear system by calling

HYPRE_AMSSolve(solver, A, b, x);
Finally, the solver can be destroyed with
HYPRE_AMSDestroy (&solver) ;

More details can be found in the files ams.h and ams.c located in the parcsr_1s directory.

48 CHAPTER 6. SOLVERS AND PRECONDITIONERS

6.10 The MLI Package

MLI is an object-oriented module that implements the class of algebraic multigrid algorithms based
on Vanek and Brezina’s smoothed aggregation method [24, 23]. There are two main algorithms in
this module - the original smoothed aggregation algorithm and the modified version that uses the
finite element substructure matrices to construct the prolongation operators. As such, the later
algorithm can only be used in the finite element context via the finite element interface. In addition,
the nodal coordinates obtained via the finite element interface can be used to construct a better
prolongation operator than the pure translation modes.
Below is an example on how to set up MLI as a preconditioner for conjugate gradient.

HYPRE_LSI_MLICreate(MPI_COMM_WORLD, &pcg_precond);

HYPRE_LSI_MLISetParams(pcg_precond, "MLI strengthThreshold 0.08");

HYPRE_PCGSetPrecond(pcg_solver,
(HYPRE_PtrToSolverFcn) HYPRE_LSI_MLISolve,
(HYPRE_PtrToSolverFcn) HYPRE_LSI_MLISetup,
pcg_precond) ;

Note that parameters are set via HYPRE_LSI_MLISetParams. A list of valid parameters that can be
set using this routine can be found in the FEI section of the reference manual.

6.11 ParaSails

ParaSails is a parallel implementation of a sparse approximate inverse preconditioner, using a
priori sparsity patterns and least-squares (Frobenius norm) minimization. Symmetric positive
definite (SPD) problems are handled using a factored SPD sparse approximate inverse. General
(nonsymmetric and/or indefinite) problems are handled with an unfactored sparse approximate
inverse. It is also possible to precondition nonsymmetric but definite matrices with a factored,
SPD preconditioner.

ParaSails uses a priori sparsity patterns that are patterns of powers of sparsified matrices.
ParaSails also uses a post-filtering technique to reduce the cost of applying the preconditioner. In
advanced usage not described here, the pattern of the preconditioner can also be reused to generate
preconditioners for different matrices in a sequence of linear solves.

For more details about the ParaSails algorithm, see [4].

6.11.1 Parameter Settings

The accuracy and cost of ParaSails are parameterized by the real thresh and integer nlevels pa-
rameters, 0 < thresh < 1, 0 < nlevels. Lower values of thresh and higher values of nlevels lead to
more accurate, but more expensive preconditioners. More accurate preconditioners are also more

6.11. PARASAILS 49

expensive per iteration. The default values are thresh = 0.1 and nlevels = 1. The parameters are
set using HYPRE_ParaSailsSetParams.

Mathematically, given a symmetric matrix A, the pattern of the approximate inverse is the
pattern of A™ where A is a matrix that has been sparsified from A. The sparsification is performed
by dropping all entries in a symmetrically diagonally scaled A whose values are less than thresh in
magnitude. The parameter nlevel is equivalent to m+ 1. Filtering is a post-thresholding procedure.
For more details about the algorithm, see [4].

The storage required for the ParaSails preconditioner depends on the parameters thresh and
nlevels. The default parameters often produce a preconditioner that can be stored in less than the
space required to store the original matrix. ParaSails does not need a large amount of intermediate
storage in order to construct the preconditioner.

ParaSail’s Create function differs from the synopsis in the followin way:

int HYPRE_ParaSailsCreate(MPI_Comm comm, HYPRE_Solver *solver,
int symmetry);

where comm is the MPI communicator.
The value of symmetry has the following meanings, to indicate the symmetry and definiteness
of the problem, and to specify the type of preconditioner to construct:

value | meaning
0 nonsymmetric and/or indefinite problem, and nonsymmetric preconditioner
1 SPD problem, and SPD (factored) preconditioner
2 nonsymmetric, definite problem, and SPD (factored) preconditioner

For more information about the final case, see section [6.11.2
Parameters for setting up the preconditioner are specified using

int HYPRE_ParaSailsSetParams (HYPRE_Solver solver,
double thresh, int nlevel, double filter);

The parameters are used to specify the sparsity pattern and filtering value (see above), and are
described with suggested values as follows:

parameter | type range sug. values | default | meaning
nlevel integer | nlevel > 0 0,1,2 1 m =nlevel + 1
thresh real thresh >0 | 0, 0.1, 0.01 0.1 thresh = thresh
thresh < 0 | -0.75,-0.90 thresh selected automatically
filter real filter >0 | 0, 0.05, 0.001 0.05 | filter value = filter
filter <0 -0.90 filter value selected automatically

When thresh < 0, then a threshold is selected such that —thresh represents the fraction
of the nonzero elements that are dropped. For example, if thresh = —0.9 then A will contain
approximately ten percent of the nonzeros in A.

When filter < 0, then a filter value is selected such that —filter represents the fraction of
the nonzero elements that are dropped. For example, if filter = —0.9 then approximately 90
percent of the entries in the computed approximate inverse are dropped.

50 CHAPTER 6. SOLVERS AND PRECONDITIONERS

6.11.2 Preconditioning Nearly Symmetric Matrices

A nonsymmetric, but definite and nearly symmetric matrix A may be preconditioned with a sym-
metric preconditioner M. Using a symmetric preconditioner has a few advantages, such as guar-
anteeing positive definiteness of the preconditioner, as well as being less expensive to construct.

The nonsymmetric matrix A must be definite, i.e., (A+ AT)/2 is SPD, and the a priori sparsity
pattern to be used must be symmetric. The latter may be guaranteed by 1) constructing the sparsity
pattern with a symmetric matrix, or 2) if the matrix is structurally symmetric (has symmetric
pattern), then thresholding to construct the pattern is not used (i.e., zero value of the thresh
parameter is used).

6.12 FEuclid

The Euclid library is a scalable implementation of the Parallel ILU algorithm that was presented at
SC99 [12], and published in expanded form in the STAM Journal on Scientific Computing [13]. By
scalable we mean that the factorization (setup) and application (triangular solve) timings remain
nearly constant when the global problem size is scaled in proportion to the number of processors.
As with all ILU preconditioning methods, the number of iterations is expected to increase with
global problem size.

Experimental results have shown that PILU preconditioning is in general more effective than
Block Jacobi preconditioning for minimizing total solution time. For scaled problems, the relative
advantage appears to increase as the number of processors is scaled upwards. Euclid may also be
used to good advantage as a smoother within multigrid methods.

6.12.1 Overview

Fuclid is best thought of as an “extensible ILU preconditioning framework.” FEztensible means
that Euclid can (and eventually will, time and contributing agencies permitting) support many
variants of ILU(k) and ILUT preconditioning. (The current release includes Block Jacobi ILU(k)
and Parallel ILU(k) methods.) Due to this extensibility, and also because Euclid was developed
independently of the hypre project, the methods by which one passes runtime parameters to Euclid
preconditioners differ in some respects from the hypre norm. While users can directly set options
within their code, options can also be passed to Euclid preconditioners via command line switches
and/or small text-based configuration files. The latter strategies have the advantage that users will
not need to alter their codes as Euclid’s capabilities are extended.

The following fragment illustrates the minimum coding required to invoke Euclid precondition-
ing within hypre application contexts. The next subsection provides examples of the various ways
in which Euclid’s options can be set. The final subsection lists the options, and provides guidance
as to the settings that (in our experience) will likely prove effective for minimizing execution time.

#include "HYPRE_parcsr_ls.h"

HYPRE_Solver eu;

6.12. EUCLID 51

HYPRE_Solver pcg_solver;
HYPRE_ParVector b, x;
HYPRE_ParCSRMatrix A;

//Instantiate the preconditioner.
HYPRE_EuclidCreate(comm, &eu);

//Optionally use the following three methods to set runtime options.
// 1. pass options from command line or string array.
HYPRE_EuclidSetParams(eu, argc, argv);

// 2. pass options from a configuration file.
HYPRE_EuclidSetParamsFromFile(eu, "filename");

// 3. pass options using interface functions.
HYPRE_EuclidSetLevel (eu, 3);

//Set Euclid as the preconditioning method for some
//other solver, using the function calls HYPRE_EuclidSetup
//and HYPRE_EuclidSolve. We assume that the pcg_solver
//has been properly initialized.
HYPRE_PCGSetPrecond(pcg_solver,
(HYPRE_PtrToSolverFcn) HYPRE_EuclidSolve,
(HYPRE_PtrToSolverFcn) HYPRE_EuclidSetup,
eu) ;

//Solve the system by calling the Setup and Solve methods for,

//in this case, the HYPRE_PCG solver. We assume that A, b, and x

//have been properly initialized.

HYPRE_PCGSetup(pcg_solver, (HYPRE_Matrix)A, (HYPRE_ Vector)b, (HYPRE Vector)x);
HYPRE_PCGSolve(pcg_solver, (HYPRE_Matrix)parcsr_A, (HYPRE_Vector)b, (HYPRE_Vector)x);

//Destroy the Euclid preconditioning object.
HYPRE_EuclidDestroy (eu);

6.12.2 Setting Options: Examples

For expositional purposes, assume you wish to set the ILU(k) factorization level to the value k = 3.
There are several methods of accomplishing this. Internal to Euclid, options are stored in a simple
database that contains (name, value) pairs. Various of Euclid’s internal (private) functions query
this database to determine, at runtime, what action the user has requested. If you enter the option

52 CHAPTER 6. SOLVERS AND PRECONDITIONERS

“_eu_stats 1”, a report will be printed when Euclid’s destructor is called